新闻中心

航天中的“氢能”

10月16日,神舟十三号载人飞船成功发射。作为全世界为数不多的在航天领域中有所成就的国家,我国再次赢得了一方喝彩。 氢能观察注意到,在此次发射中,成都中材科技制造的“氢气瓶”也随着神舟十三号载人飞船的返回舱一同上了“天宫”。

随着减碳减排的逐渐普及与深入,航空业也正在努力之中。氢能航空被认为是航空业未来实现污染物零排放和可持续发展的关键。虽然氢能具有绿色环保、能量密度高等优点,但发展氢能航空还需要突破氢燃烧、氢燃料加注和储存等一系列关键技术瓶颈。 《2019年政府工作报告》中首次写入了氢能源,自此氢能源被纳入了我国能源体系。航空业使用氢能源不但可以实现二氧化碳零排放,同时还能有效减少其他污染物的排放量,具有非常明显的优势。 与传统石化燃料相比,液氢燃料具有温度低、易蒸发、易燃等特点,其加注过程复杂、耗时长且安全风险较高,大大增加了飞机在机场停靠加注燃料的时间,提高了飞机运营的成本。 9月23日,101所完成了重型运载火箭220吨级补燃循环氢氧发动机首次半系统试验,试验按照预定程序正常起动,主级工作稳定,程序自动关机,试验取得圆满成功。发动机工作参数全部获得,试验台工艺系统工作正常,达到了预期的试验目的。

在燃料电池技术领域,航天科技集团拥有质子交换膜燃料电池系统动力应用、可再生能源储能应用及泵阀关键部件技术,具备了百千瓦级氢氧/氢空及再生燃料电池系统研制能力,完成国内第一台车用高压燃料电池发动机装车运行,通过两千公里全路况模拟实验考核,60KW大巴车用燃料电池发动机完成发电试验和装车集成。 当前航空业已掌握的储存技术中,高压气体或低温液体储罐技术可以用于氢能飞机机载氢燃料的存贮。若以压缩气体形式储氢,将对飞机质量和体积要求提出巨大挑战。相比之下,液态氢储存具有较高的质量能量储存密度,成为了最有前途的技术途径之一。 据了解,液态氢燃料需要以极低温度(低于-253℃)储存,同时为了减少液氢沸腾导致的损失,需要在储罐中维持1.429atm的恒定压强,这将导致液氢储罐结构和配套冷却系统异常复杂,进而大大降低整体系统的质量能量密度和安全性。相关研究显示,液氢储罐应采用球形或柱状,而传统机翼油箱不适宜储存液氢燃料。因此,对于中、短程客机而言,需要对现有机体结构进行调整或重新设计,以增加液氢储罐(如图3所示)。储罐大小因机身形状、尺寸以及飞行任务和航程长短而定。增加液氢储罐后,会导致机体尺寸增加或客舱空间减小,进而增加飞行阻力或飞行成本。对于载客量超过250人,飞行距离超过10000km的远程客机,由于机载液态氢储罐的附加质量已使传统客机结构无法满足设计要求,因此需要引入全新的、革命性的机体设计思路,如翼身融合设计、箱式机翼结构等,以达到提高飞机内部空间结构利用率的目的。 近年来,包括美国、日本和欧洲等发达国家和地区纷纷加大氢能研发的投入,重点支持乘用车、加氢站、公共汽车、电解水制氢装置、中重型运输(包括中型到大型乘用车、商用车、重载卡车、火车、海运、航空)等领域。未来氢能在航空业要完全替代传统石化燃料还须面临动力推进系统、机载氢燃料储存、机场基础设施建设以及氢燃料生产等一系列关键技术的挑战和突破。